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4,9,16,21 -Tetramethy 1-5,7,17,19- tetrakisdehy dro[ 14]-
annuleno[14]annulene, a Macrocyclic Analog 
of Naphthalene1'2 

Sir: 

A little explored aspect of annulene chemistry is the syn­
thesis of fused bicyclic hydrocarbons made up of identical 
[An + 2]- or of [4w]annulene rings. Hitherto, the only 
well studied example is naphthalene ([6]annuleno[6]annu-
lene), which has been known for a considerable time.3 It 
was of interest to make available other representatives of 
this series, particularly to investigate their "aromatic i ty" or 
"antiaromatici ty". We now describe the synthesis of 
4,9,16,21-tetramethyl-5,7,17,19-tetrakisdehydro[14]annu-
leno[14]annulene ( I ) , 2 , 4 a simple derivative of the 267r-elec-
tron [14]annuleno[14]annulene (e.g., 2), in which both 
rings are (4n + 2)-membered. 

A potential intermediate for the synthesis of 1 was the di-

aldehyde 14, a suitable precursor of which appeared to be 
the previously described dimethylbisdehydro[14]annule-
no[c]furan, 6.5 Since 6 was required in quantity, an im­
proved synthesis was developed. 3,4-Furandicarboxal-
dehyde6 was converted to the bisvinylog 3, mp 158-
160° 7a'8-9 in 77% yield by the method of Cresp et al .1 0 

Reaction of 3 with an excess of the Mg derivative of 3-
bromo-1-butyne1 1 in ether at —30° for 15 min gave the pale 
yellow diol 4 9 as a stereoisomeric mixture, which was cou­
pled to the macrocyclic diol 5 with O2, CuCl, N H 4 C l , and 
HCl in aqueous C2H5OH and benzene. It was unnecessary 
to purify or separate the stereoisomers of the noncrystalline 
4 and 5. Treatment of crude 5 with mesyl chloride and 
N ( C 2 H s ) 3

1 2 in dimethoxyethane (0° , 1.5 hr, N 2 ) and subse­
quent elimination with l,5-diazabicyclo[4.3.0]non-5-ene at 
20° for 3.5 hr then led to 6 7 b in ~ 3 0 % yield (based on 
3) . 1 3 ' 1 4 

H3C CH3 H3C CH3 

5 6 

After considerable experimentation it was found that 
suitable modification of the furan ring of 6 could be ef­
fected by t reatment with P b ( O A c ) 4 in C H 3 C O O H 1 5 (20° , 
30 min, N 2 ) , which led to the diacetate 7 (red gum; 9 Amax 
(ether) 307 sh (e 62,500), 319 (91,500), 371 (9800), 393 
(9300), 458 sh (330), 504 sh (280), 552 sh nm (190)) . Hy­
drolysis of 7 with oxalic acid in aqueous T H F (20° , 12 hr, 
N 2 ) , gave the corresponding diol 8 (orange solid; m/e 262 
( M + — H 2 O ) ) instead of the dialdehyde 14, as evidenced by 
the 1 H N M R and ir spectra. The 1 H N M R spectra of 7 and 
8 indicated them to be ca. 1:1 mixtures of the cis and trans 
isomers,1 5 which were not separated. Substance 8 proved to 
be base-sensitive, but could be condensed with carbethoxy-
methylenetr iphenylphosphorane1 6 in benzene (80° , 16 hr, 
N 2 ) . The reaction led to ~ 5 0 % (based on 6) of the trans, 
t rans diester 97 a-1 7 as red needles: mp 141-142 0 : 9 Xmax 
(ether) 343 (e 62,500), 405 sh (14,800), 418 nm (15,600). 
Reduction of 9 with / -Bu 2 AlH in benzene (6° , 15 min, N 2 ) 
gave the diol 10 as red needles: ,18 Xmax 

(ether) 336 (t 
56,400), 384 sh (9900), 396 sh (10,700), 413 (13,400), 476 
(4900), 520 (540), 569 nm (400). Oxidation of 10 with 
M n O 2 in C H 2 C l 2 (20° , 1 hr, N 2 ) yielded 74% (based on 9) 
of the dialdehyde 11 as orange needles:9 '18 Xmax (ether) 265 
(e 10,000), 347 (51,900), 420 nm (15,900), with absorption 
to 600 nm (Scheme I) . 

Trea tment of 11 with an excess of the M g derivative of 
3-bromo-l-butyne, 1 1 as previously, gave the diol 12 which 
was coupled to 13 with C u ( O A c ) 2 - H 2 O in D M F at 65° for 
~ 4 hr. The red noncrystalline diols 12 and 13 are mixtures 
of stereoisomers, which were not separated. Dehydration of 
crude 13 via the dimesylate, essentially as before, then 
yielded 5% (based on 11) of the tetrakisdehydro[14]annule-
no[ 14] annulene 1 as dark red-brown prisms: m/e 384.1871 
(calcd 384.1878);7 a '1 8 Xmax (ether) 258 (« 14,400), 278 sh 
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Scheme I 

H3C CH, 

7. R = COCH3 

8, R = H 

H3C CH3 

9, R = COOCoH5 

10, R = CH,0H 
U, R = CHO 

H3C CH3 

H3C CH3 

14 

Table I. Some 1H NMR Parameters of 9, 10, 11, 1, 15, and 6 
at 100 MHz in CDCl3 (r Values; Internal Standard TMS)2 

Compd 

9 
10 
11 

1 
15 
6 

HA 

8.83 
9.24 
8.56 
6.18 
5.01 
3.48 

HB HC 

2.07 2.31 
1.88 2.22 
«- 2.06-2.34 -> 
2.13 2.69 
2.56 2.92 
3.69 3.28 

CH3 

7.29 
7.28 
7.26 
7.52 
7.64 
7.94 

«HA(d,J = 15-16Hz), HB (dd,/= 7.5-10, 15-16 Hz), HC (d, 
/ = 7.5-10 Hz), CH3 (s), for all compounds. 

(16,800), 292 (21,100), 386 (45,400), 552 sh (1050), 607 sh 
nm (580); i/max (KBr) 2130 m ( C = C ) , 970 s (trans C = C ) 
c m - 1 . Substance 1 was relatively stable, both in the solid 
state and in ether solution. 

It has been shown previously that the 1H N M R spectra 
of certain l,3-bisdehydro[14]annulenes are temperature de­
pendent, due to rotation about the trans double bonds,19 

and this proved to be the case with the diacetate 7. On the 
other hand, the 1H N M R spectra of the dehydroannulenes 
9, 10, 11, and 1 were essentially temperature independent in 
the range —60 to 100°, and showed the macrocyclic rings to 
exist in the indicated conformations. 

Some 1H N M R parameters of various 1,3-bisdehydro-
[14]annulenes are given in Table I. As expected, the substi­
tuted compounds 9, 10, and 11 are diatropic ("aromatic"), 
the inner H A protons resonating at unusually high field, and 
the outer HB , H c , and CH 3 protons at unusually low field. 
It has already been found that the diatropicity of a 1,3-bis-
dehydro[14]annulene is considerably reduced by fusion of a 
benzene ring (see IS in Table I) ,2 0 and almost completely 
eliminated by fusion of a [cjfuran ring (see 6 in Table I).5 

It is evident from the N M R spectrum of 1 that fusion of a 
second bisdehydro[14]annulene also reduces the diamag-
netic ring current of the bisdehydro[14]annulene, although 
to a lesser extent than benzene. The decreasing order of dia­

tropicity of the macrocyclic ring of the various compounds 
in Table I (9, 10, 11 > 1 > 15 > 6) is presumably a reflec­
tion of a decrease in the importance of different participat­
ing Kekule structures of that ring. 
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Cycloadditions of Alkenylidenecyclopropanes with 
Acetylenic Dienophiles. An Exclusive Formation 
of the (2 + 2) Cycloadduct 

Sir: 

Alkenylidenecyclopropane (1) has been shown recently 
by Pasto and his coworkers to react with 4-phenyl-1,2,4-
triazoline-3,5-dione via a concerted [(^2 + T2 4- c2) + T2] 
pathway,1 while with chlorosulfonylisocyanate (CSI) 1 
reacts via a dipolar intermediate followed by cyclopropane 
ring opening and recyclization2 and with methylenemalon-
dinitriles3 and dichlorodifluoroethylene4 in a (2 + 2) fash­
ion via a radical mechanism. In view of the above variety of 
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